An Analysis of Zinc Sorption to Amorphous versus CrystallineIron Oxides Using XAS

نویسندگان

  • Paras Trivedi
  • Lisa Axe
  • Trevor A. Tyson
چکیده

This research probes the mechanisms of Zn adsorption on hydrated oxides of iron (HFO and goethite) using XAS. A systematic investigation reveals that Zn2+ upon sorption to HFO retains its hydration shell (N∼ 6 oxygens, R∼ 2.18 Å), irrespective of pH and adsorbate loading. Furthermore, the absence of second-shell contributions in combination with the temperature dependence of the structural parameters confirms outer-sphere adsorption complexes with HFO. In a coprecipitation study, the local coordination environment was consistent with Zn adsorption to HFO. On the other hand, Zn2+ strongly adsorbs to goethite forming a tetragonal structure (N∼ 4 oxygens and R∼ 1.97 Å). Evidence of two Fe3+ ions in the second shell at approximately 3.51 Å suggests an innersphere adsorption complex with goethite. Results demonstrate that even though the local structures of HFO and goethite are similar, the surface sites available to transition metals like zinc are vastly different. Overall, these spectroscopic analyses are consistent with macroscopic observations. C © 2001 Elsevier Science

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetics and mechanisms of Zn complexation on metal oxides using EXAFS spectroscopy.

Zn(II) sorption onto Al and Si oxides was studied as a function of pH (5.1-7.52), sorption density, and ionic strength. This study was carried out to determine the role of the various reaction conditions and sorbent phases in Zn complexation at oxide surfaces. Extended X-ray absorption fine structure (EXAFS) spectroscopy was used to probe the Zn atomic environment at the metal oxide/aqueous int...

متن کامل

Abstract No. pan0505 Sorption of Heavy Metal Contaminants onto Hydrated Ferric Oxides: Mechanistic Modeling using X-ray Absorption Spectroscopy

No. pan0505 Sorption of Heavy Metal Contaminants onto Hydrated Ferric Oxides: Mechanistic Modeling using X-ray Absorption Spectroscopy P. Trivedi, D. Sparks (U. Delaware) and K. Pandya (NRL) Beamline(s): X11A Introduction: Iron oxides are ubiquitous in soils and aquatic sediments as discrete particles or coatings on other mineral and organic materials. They play a significant role in controllin...

متن کامل

Mechanistic and thermodynamic interpretations of zinc sorption onto ferrihydrite.

Elucidating the reaction mechanisms and estimating the associated transport and thermodynamic parameters are important for an accurate description of the fate of toxic metal pollutants, such as Zn(II), in soils and aquatic ecosystems rich in iron oxides. Consequently, sorption of Zn(II) ions onto ferrihydrite was investigated with macroscopic and spectroscopic studies as a function of pH (4.0-8...

متن کامل

Mechanisms of Arsenic Adsorption on Amorphous Oxides Evaluated Using Macroscopic Measurements, Vibrational Spectroscopy, and Surface Complexation Modeling.

Arsenic adsorption on amorphous aluminum and iron oxides was investigated as a function of solution pH, solution ionic strength, and redox state. In this study in situ Raman and Fourier transform infrared (FTIR) spectroscopic methods were combined with sorption techniques, electrophoretic mobility measurements, and surface complexation modeling to study the interaction of As(III) and As(V) with...

متن کامل

Adsorption of copper, cadmium, lead and zinc onto a synthetic manganese oxide.

Due to its simple and inexpensive synthesis, a new amorphous hydrous manganese oxide (AMO) has been studied as a possible chemical stabilizing agent for soils contaminated with metals. Preliminary experiments evaluating the stability of AMO in pure water have reported only minor dissolution (5.70% and 0.24% depending on the w/v ratio). Sorption kinetics have shown fast metal adsorption, especia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001